ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of 4,5-disubstituted-3-trihalomethylisothiazoles

Michael P. Zawistoski, Shannon M. Decker, David A. Griffith *

Department of Cardiovascular, Metabolic and Endocrine Diseases Medicinal Chemistry, Pfizer Global Research and Development, Groton, CT 06340, United States

ARTICLE INFO

Article history:
Received 16 September 2009
Revised 5 October 2009
Accepted 8 October 2009
Available online 4 November 2009

ABSTRACT

Herein, we describe the synthesis of 4,5-disubstituted-3-trihalomethylisothiazoles from trihaloacetonitriles and 2-cyanothioacetamides or 2-ethoxycarbonylthioacetamides. The reactivity of the necessary trihaloacetonitriles has a significant impact on the observed reaction pathways. Reactions with CF_3CN require an oxidant to mediate cyclization, while CCl_3CN functions as both the reactant and oxidant.

© 2009 Elsevier Ltd. All rights reserved.

Substituted isothiazoles such as **1** are important building blocks for the preparation of a wide range of compounds with industrial and pharmaceutical importance.¹ Towards our efforts to identify short acting calcium-sensing receptor (CaR) antagonists² we sought intermediate 3-trifluoromethylisothiazoles like **1c** or **1d** to synthesize CF₃-substituted isothiazolopyrimidinone CaR antagonists.³ While several isothiazoles with a CF₃ group in the 3-position were known,⁴ none contained the substitution at the 4- and 5-positions that we required. Isothiazoles **1a**⁵ or **1b**⁶ were readily available from the corresponding R¹-orthoester, however, attempts to prepare **1c** or **1d** by this route proved unsuccessful.

Herein we wish to report a route to readily prepare CF_3 -substituted isothiazoles $\mathbf{1c}$ and $\mathbf{1d}$. We reasoned that 2-cyanothioacetamide (2) would react with electron-deficient CF_3CN (3) under basic conditions to directly form vinylogous thiourea intermediate $\mathbf{4}$ (Scheme 1). Subsequent oxidative cyclization would then give the desired isothiazole. In practice, triethylamine was added to a mixture of $\mathbf{2}$ and $\mathbf{3}$ in EtOH at -78 °C. After the mixture was warmed to room temperature, H_2O_2 was added to mediate oxidative cyclization to give isothiazole $\mathbf{1c}$ in 48% yield. A range of oxidants including N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide (NIS), Br_2 , I_2 and SO_2Cl_2 effected the cyclization as judged by thin-layer chromatography (TLC).

With a successful synthesis of **1c** in hand, we sought to further examine the scope of the transformation. Attempts to couple **2** with acetonitrile or benzonitrile to give **1a** and **1b**, respectively,

proved unsuccessful, likely due to the relatively lower electrophilicity of the nitrile carbons. However, another electron-deficient nitrile, CCl_3CN (5), proved interesting. Nitrile 5 participates as both reactant and oxidant⁸ (Scheme 2) during its reaction with 2. The reaction occurred at or above room temperature to directly give the desired cyclized product 1e without need for an added oxidant, such as H_2O_2 .

We next examined the range of N-substituted isothiazoles that would react to form trihalomethylisothiazoles. We were pleased to find that *N*-alkyl thioamides could be employed to give moderate

NC
$$NH_2$$
 + CF_3CN $\xrightarrow{-78 \text{ °C to r.t.}}$ F_3C NH_2 NH_2

Scheme 1. Synthesis of isothiazole **1c**.

Scheme 2. Proposed mechanism for the formation of 1e.

^{*} Corresponding author. Tel.: +1 860 441 6215; fax: +1 860 715 8324. E-mail address: david.a.griffith@pfizer.com (D.A. Griffith).

Table 1
Synthesis of isothiazoles 9a-d and 10a-d

S
NC NHR + CX₃CN
$$\xrightarrow{RIS}$$
 NS NHR
8a-d \xrightarrow{S} X = F
 \xrightarrow{S} Et₃N, EtOH, or \xrightarrow{S} NHR
 \xrightarrow{S} NHR
 \xrightarrow{S} 10a-d X = F
10a-d X = CI

R	Product	% Yield 9	Product	% Yield 10
CH ₃	9a	44	10a	25
Benzyl	9b	36	10b	36
Cyclohexyl	9c	46	10c	49
Phenyl	9d	65	10d	56

Table 2
Synthesis of isothiazoles 1d and 1f

Entry	Nitrile	Conditions	Product	% Yield 1
1	3	(1) Et ₃ N, -78 °C to room temperature; (2) H_2O_2	1d	0
2	5	Et₃N, −78 °C to room temperature	1f	14
3	3	(1) Et ₃ N, -78 °C, 1 h; (2) H ₂ O ₂	1d	30

yields of the desired isothiazoles (Table 1). The highest yields were obtained using the *N*-phenyl thioamide.

Towards the synthesis of isothiazole ester **1d**, we examined isothiazole formation with ester **11** in place of nitrile **2**. However, in the reaction of **11** with CF_3CN (**3**) using the conditions described above (Et_3N , -78 °C to room temperature; H_2O_2), none of the desired isothiazole (**1d**) was formed (Table 2, entry 1). In contrast, the reaction of **11** with CCl_3CN (**5**) provided isothiazole **1f** (Table 2, entry 2), albeit in modest yield (14%).

To better understand the different outcomes upon reaction of CF₃CN (**3**) with nitrile **2** and ester **11**, we sought to characterize the intermediates prior to oxidation. The reaction of nitrile **2** with CF₃CN (**3**) gave two products (Table 3, entry 4). The major product was the expected vinylogous thiourea **12a**, (35% isolated yield after purification), and the minor component was dinitrile **14a** which was likely formed by the mechanism shown in Table 3. When oxidant was added to purified **12a**, it proceeded to give the desired isothiazole **1c**

In contrast, the reaction of ester **11** with CF_3CN (**3**) provided the desired intermediate **12b** as the minor product, while nitrile side-product **14b** was the predominant product (Table 3, entry 5). Furthermore, when the reaction was warmed or allowed to proceed for several hours, only **14b** was isolated. We therefore sought to generate intermediate **12b** and then oxidize it to **1d** before it could react with excess CF_3CN (**3**); addition of H_2O_2 at -78 °C 1 h after the addition of Et_3N gave **1d** (Table 2, entry 3) in 30% yield.

In conclusion, we have developed a novel synthesis of 4,5-disubstituted-3-trihalomethylisothiazoles. This methodology is tolerant of N-substituted thioamides, but appears to require acetonitriles containing strongly electron-withdrawing groups. The reactivity of the necessary trihaloacetonitriles has a significant im-

Table 3Proposed mechanism for the formation of **14a** and **14b**

2 or 11
$$\frac{\text{Et}_{3}\text{N, EtOH,}}{-78 \text{ °C to r.t.}} \xrightarrow{F_{3}\text{C}} \xrightarrow{\text{NH}_{2}} \xrightarrow{\text$$

13a R = CN	14a R = CN
13b R = CO_2Et	14b R = CO_2Et

Entry	Thioamide	% Yield 12	% Yield 14
4	2	35	4
5	11	6	68

pact on the observed reaction pathways. Reactions with CF₃CN (3) require an oxidant to mediate cyclization, while CCl₃CN (5) functions as both the reactant and oxidant. CF₃CN (3) is more reactive with ester intermediate 12b than with nitrile intermediate 12a, thereby requiring oxidation at low temperature after a short time period to obtain ester 1d.

Acknowledgements

We wish to thank Professor Andy Myers, Steven Wright and Daniel Kung for helpful suggestions with this chemistry.

Supplementary data

Supplementary data (experimental procedures and characterization of final products) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.10.051.

References and notes

- (a) Isothiazolopyrimidinone Eg5 inhibitors: Aquila, B.; Block, M. H.; Davies, A.; Ezhuthachan, J.; Filla, S.; Luke, R. W.; Pontz, T.; Theoclitou, M.-E.; Zheng, X. WO Patent Appl. 2004078758, 2004. Aquila, B.; Block, M. H.; Davies, A.; Ezhuthachan, J.; Pontz, T.; Russel, D. J.; Theoclitou, M.-E.; Zheng, X. WO Patent Appl. 2006018627, 2006.; (b) Isothiazolopyrimidine receptor tyrosine kinase inhibitors: Ji, Z.; Ahmed, A. A.; Albert, D. H.; Bouska, J. J.; Bousquet, P. F.; Cunha, G. A.; Glaser, K. B.; Guo, J.; Li, J.; Marcotte, P. A.; Moskey, M. D.; Pease, L. J.; Stewart, K. D.; Yates, M.; Davidsen, S. K.; Michaelides, M. R. Bioorg. Med. Chem. Lett. 2006, 16, 4326–4330; (c) Azo dyes: Hansen, G.; Lamm, G.; Reichelt, H.; Schefczik, E. E. P. Patent 335234 B1, 1992. Hansen, G.; Lamm, G.; Reichelt, H.; Schefczik, E. E.P. Patent 362708 B1, 1994.
- Didiuk, M. T.; Griffith, D. A.; Benbow, J. W.; Liu, K. K. C.; Walker, D. P.; Bi, F. C.; Morris, J.; Guzman-Perez, A.; Gao, H.; Bechle, B. M.; Kelley, R. M.; Yang, X.; Dirico, K.; Ahmed, S.; Hungerford, W.; Di Brinno, J.; Zawistoski, M. P.; Bagley, S. W.; Li, J.; Zeng, Y.; Santucci, S.; Oliver, R.; Corbett, M.; Olson, T.; Chen, C.; Li, M.; Paralkar, V. M.; Riccardi, K. A.; Healy, D. R.; Kalgutkar, A. S.; Maurer, T. S.; Nguyen, H. T.; Frederick, K. S. Bioorg. Med. Chem. Lett. 2009, 19, 4555-4559.
- Bi, F.; Didiuk, M. T.; Griffith, D. A.; Guzman-Perez, A.; Liu, K. K.; Walker, D. P. WO Patent Appl. 2008041118 A2, 2008.
- a Sanders, M. J.; Grunwell, J. R. J. Org. Chem. 1980, 45, 3753–3756; (b) Nickson, T. E. J. Fluorine Chem. 1991, 55, 173–177.
- 5. Anderson, R. C.; Hsiao, Y. Y. J. Heterocycl. Chem. **1975**, 12, 883–887.
- 6. Kappe, C. O.; Flammang, R.; Wentrup, C. Heterocycles 1994, 37, 1615-1622.
- 7. We used NIS in much of our work to avoid potential hazards arising from inadequate quenching of peroxide, though $\rm H_2O_2$ was used as the oxidant in low temperature studies due to the insolubility of NIS in ethanol at $-78\,^{\circ}$ C.
- 8. Jang, D. O.; Park, D. J.; Kim, J. Tetrahedron Lett. **1999**, 40, 5323–5326.
- 9. The addition of 1 equiv of CF3CN is challenging since it is a gas which boils at $-64\ ^{\circ}\text{C}.$